IODOPSIN

Author:

Wald George1,Brown Paul K.1,Smith Patricia H.1

Affiliation:

1. From The Biological Laboratories of Harvard University, Cambridge

Abstract

The iodopsin system found in the cones of the chicken retina is identical with the rhodopsin system in its carotenoids. It differs only in the protein—the opsin —with which carotenoid combines. The cone protein may be called photopsin to distinguish it from the scotopsins of the rods. Iodopsin bleaches in the light to a mixture of photopsin and all-trans retinene. The latter is reduced by alcohol dehydrogenase and cozymase to all-trans vitamin A1. Iodopsin is resynthesized from photopsin and a cis isomer of vitamin A, neovitamin Ab or the corresponding neoretinene b, the same isomer that forms rhodopsin. The synthesis of iodopsin from photopsin and neoretinene b is a spontaneous reaction. A second cis retinene, isoretinene a, forms iso-iodopsin (λmax 510 mµ). The bleaching of iodopsin in moderate light is a first-order reaction (Bliss). The synthesis of iodopsin from neoretinene b and opsin is second-order, like that of rhodopsin, but is very much more rapid. At 10°C. the velocity constant for iodopsin synthesis is 527 times that for rhodopsin synthesis. Whereas rhodopsin is reasonably stable in solution from pH 4–9, iodopsin is stable only at pH 5–7, and decays rapidly at more acid or alkaline reactions. The sulfhydryl poison, p-chloromercuribenzoate, blocks the synthesis of iodopsin, as of rhodopsin. It also bleaches iodopsin in concentrations which do not attack rhodopsin. Hydroxylamine also bleaches iodopsin, yet does not poison its synthesis. Hydroxylamine acts by competing with the opsins for retinene. It competes successfully with chicken, cattle, or frog scotopsin, and hence blocks rhodopsin synthesis; but it is less efficient than photopsin in trapping retinene, and hence does not block iodopsin synthesis. Though iodopsin has not yet been prepared in pure form, its absorption spectrum has been computed by two independent procedures. This exhibits an α-band with λmax 562 mµ, a minimum at about 435 mµ, and a small ß-band in the near ultraviolet at about 370 mµ. The low concentration of iodopsin in the cones explains to a first approximation their high threshold, and hence their status as organs of daylight vision. The relatively rapid synthesis of iodopsin compared with rhodopsin parallels the relatively rapid dark adaptation of cones compared with rods. A theoretical relation is derived which links the logarithm of the visual sensitivity with the concentration of visual pigment in the rods and cones. Plotted in these terms, the course of rod and cone dark adaptation resembles closely the synthesis of rhodopsin and iodopsin in solution. The spectral sensitivities of rod and cone vision, and hence the Purkinje phenomenon, have their source in the absorption spectra of rhodopsin and iodopsin. In the chicken, for which only rough spectral sensitivity measurements are available, this relation can be demonstrated only approximately. In the pigeon the scotopic sensitivity matches the spectrum of rhodopsin; but the photopic sensitivity is displaced toward the red, largely or wholly through the filtering action of the colored oil globules in the pigeon cones. In cats, guinea pigs, snakes, and frogs, in which no such colored ocular structures intervene, the scotopic and photopic sensitivities match quantitatively the absorption spectra of rhodopsin and iodopsin. In man the scotopic sensitivity matches the absorption spectrum of rhodopsin; but the photopic sensitivity, when not distorted by the yellow pigmentations of the lens and macula lutea, lies at shorter wave lengths than iodopsin. This discrepancy is expected, for the human photopic sensitivity represents a composite of at least three classes of cone concerned with color vision.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 379 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3