Ultrafast Transient Absorption Spectra and Kinetics of Rod and Cone Visual Pigments

Author:

Krishnamoorthi Arjun1ORCID,Khosh Abady Keyvan1ORCID,Dhankhar Dinesh12ORCID,Rentzepis Peter M.1

Affiliation:

1. Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA

2. Thermo Fisher Scientific, Hillsboro, OR 97124, USA

Abstract

Rods and cones are the photoreceptor cells containing the visual pigment proteins that initiate visual phototransduction following the absorption of a photon. Photon absorption induces the photochemical transformation of a visual pigment, which results in the sequential formation of distinct photo-intermediate species on the femtosecond to millisecond timescales, whereupon a visual electrical signal is generated and transmitted to the brain. Time-resolved spectroscopic studies of the rod and cone photo-intermediaries enable the detailed understanding of initial events in vision, namely the key differences that underlie the functionally distinct scotopic (rod) and photopic (cone) visual systems. In this paper, we review our recent ultrafast (picoseconds to milliseconds) transient absorption studies of rod and cone visual pigments with a detailed comparison of the transient molecular spectra and kinetics of their respective photo-intermediaries. Key results include the characterization of the porphyropsin (carp fish rhodopsin) and human green-cone opsin photobleaching sequences, which show significant spectral and kinetic differences when compared against that of bovine rhodopsin. These results altogether reveal a rather strong interplay between the visual pigment structure and its corresponding photobleaching sequence, and relevant outstanding questions that will be further investigated through a forthcoming study of the human blue-cone visual pigment are discussed.

Funder

Air Force Office of Scientific Research

Texas A&M Engineering Experiment Station

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference68 articles.

1. Rhodopsin, light-sensor of vision;Hofmann;Prog. Retin. Eye Res.,2023

2. Luo, L. (2015). Principles of Neurobiology, Garland Science.

3. Evolution of opsins and phototransduction;Shichida;Philos. Trans. R. Soc. B Biol. Sci.,2009

4. Structure of cone photoreceptors;Mustafi;Prog. Retin. Eye Res.,2009

5. Single-photon detection by rod cells of the retina;Rieke;Rev. Mod. Phys.,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3