Calcium binding and permeation in TRPV channels: Insights from molecular dynamics simulations

Author:

Liu Chunhong1ORCID,Xue Lingfeng1ORCID,Song Chen12ORCID

Affiliation:

1. Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University 1 , Beijing, China

2. Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University 2 , Beijing, China

Abstract

Some calcium channels selectively permeate Ca2+, despite the high concentration of monovalent ions in the surrounding environment, which is essential for many physiological processes. Without atomistic and dynamical ion permeation details, the underlying mechanism of Ca2+ selectivity has long been an intensively studied, yet controversial, topic. This study takes advantage of the homologous Ca2+-selective TRPV6 and non-selective TRPV1 and utilizes the recently solved open-state structures and a newly developed multisite calcium model to investigate the ion binding and permeation features in TRPV channels by molecular dynamics simulations. Our results revealed that the open-state TRPV6 and TRPV1 show distinct ion binding patterns in the selectivity filter, which lead to different ion permeation features. Two Ca2+ ions simultaneously bind to the selectivity filter of TRPV6 compared with only one Ca2+ in the case of TRPV1. Multiple Ca2+ binding at the selectivity filter of TRPV6 permeated in a concerted manner, which could efficiently block the permeation of Na+. Cations of various valences differentiate between the binding sites at the entrance of the selectivity filter in TRPV6. Ca2+ preferentially binds to the central site with a higher probability of permeation, repelling Na+ to a peripheral site. Therefore, we believe that ion binding competition at the selectivity filter of calcium channels, including the binding strength and number of binding sites, determines Ca2+ selectivity under physiological conditions.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3