STUDIES ON THE PHYSIOLOGICAL BASES OF MORPHOGENESIS IN FUNGI

Author:

Nickerson Walter J.1,Edwards George A.1

Affiliation:

1. From the Department of Biology, Wheaton College, Norton, and the Biological Laboratories, Harvard University, Cambridge

Abstract

The interconversions of mycelial and yeast-like forms (M ⇌ Y) in Blastomyces dermatitidis and in Blastomyces brasiliensis are characterized as examples of thermal dimorphism since the phenomena are apparently dependent only on the temperature of incubation of these two species. The change in morphology consequent upon Y → M conversion is considered to result from the selective inhibition of cell division, without the simultaneous inhibition of growth. Such selective inhibition is viewed in a wider context as an example of the differential operation of the physicochemical apparatus of the cell in the control of form development by an organism. To analyze this differential operation, which is here dependent only on temperature, we have studied the effect of temperature on oxygen consumption by each of the dimorphic forms. In the absence of external substrate the yeast forms consume 5 to 6 times more oxygen per unit dry weight than do the M forms.The Y forms exhibit an exogenous oxidation of acetate and of glucose, as well as an oxidative assimilation of these substrates, whereas the M forms exhibit no exogenous metabolism in either a resting or starved condition. A study of the effect of a wide range of temperatures on oxygen consumption by the M forms indicates the operation of two rate-limiting processes: (a) one with an activation energy of 13,250 calories/gm. molecule over the range 5–30°, and (b) reversible enzyme inactivation; the latter process assuming importance in the higher temperature range. On abrupt, large changes in temperature the balance between these two rate-limiting reactions (which it is suggested characterizes the steady state) is apparently disrupted as a result of a lag in the assumption of a rate of reversible enzyme inactivation characteristic of the new temperature. This disruption of balance is evidenced in overshoot phenomena. The effect of an analogous disruption of balance, and of increasing enzymic inactivation; on a competition between enzyme systems, competing for substrate for cell elongation and for cell division, is considered in explanation of the observed dependence of the cell division mechanism on the maintenance of an elevated temperature.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3