Abstract
AbstractAmino acids are among the earliest identified inducers of yeast-to-hyphal transitions inCandida albicans, an opportunistic fungal pathogen of humans. Here, we show that the morphogenic amino acids arginine, ornithine and proline are internalized and metabolized in mitochondria via aPUT1- andPUT2-dependent pathway that results in enhanced ATP production. Elevated ATP levels correlate with Ras1/cAMP/PKA pathway activation and Efg1-induced gene expression. The magnitude of amino acid-induced filamentation is linked to glucose availability; high levels of glucose repress mitochondrial function thereby dampening filamentation. Furthermore, arginine-induced morphogenesis occurs more rapidly and independently of Dur1,2-catalyzed urea degradation, indicating that mitochondrial-generated ATP, not CO2, is the primary morphogenic signal derived from arginine metabolism. The important role of the SPS-sensor of extracellular amino acids in morphogenesis is the consequence of induced amino acid permease gene expression, i.e., SPS-sensor activation enhances the capacity of cells to take up morphogenic amino acids, a requisite for their catabolism.C. albicanscells engulfed by murine macrophages filament, resulting in macrophage lysis. Phagocytosedput1-/-andput2-/- cells do not filament and do not lyse macrophages, consistent with a critical role of mitochondrial proline metabolism in virulence.
Publisher
Cold Spring Harbor Laboratory