Kinetics of light-dependent Ca fluxes across the plasma membrane of rod outer segments. A dynamic model of the regulation of the cytoplasmic Ca concentration.

Author:

Miller D L1,Korenbrot J I1

Affiliation:

1. Department of Physiology, University of California Medical School, San Francisco 94143.

Abstract

We measured simultaneously in single toad rods the membrane photocurrent and the Ca concentration in a small volume surrounding the outer segment. Illumination causes a rise in the extracellular Ca concentration. Photocurrents and Ca concentration changes occur over the same range of light intensities. Analysis of the time course of the Ca concentration changes suggests that these concentration changes arise from the difference in the transport rates of light-activated Ca influx and efflux across the outer segment plasma membrane. The Ca influx occurs through the light-sensitive channels of the outer segment membrane and the efflux through Na/Ca exchangers. In 0.1 mM external Ca, approximately 1-2% of the dark current is carried by Ca ions. The Ca efflux in the dark is identical to the influx, approximately 2 X 10(6) ions/s. Upon illumination, the Ca influx decreases with a time course and light sensitivity identical to those of the photocurrent. The Ca efflux, on the other hand, has very different kinetics from those of the photocurrent. Upon illumination, the Ca efflux decreases with a time course and light sensitivity determined by the change in membrane voltage and in the free cytoplasmic Ca concentration near the plasma membrane. In response to bright stimuli, which saturate the photocurrent for prolonged periods of time, the Ca efflux decays with an exponential time course from its value in darkness. The average time constant of this decay is 2.5 s. From the kinetics of the light-activated Ca fluxes, it is possible to predict that illumination causes a decrease in the cytoplasmic Ca concentration. We present a model of the regulation of the cytoplasmic Ca concentration by the dynamic balance of the Ca influx and efflux from the rod outer segment. The model accounts for our experimental observations and allows us to predict the time course and extent of the light-dependent decrease in the free cytoplasmic concentration.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3