Functional Characterization and Molecular Cloning of the K+-dependent Na+/Ca2+ Exchanger in Intact Retinal Cone Photoreceptors

Author:

Paillart Christophe1,Winkfein Robert J.2,Schnetkamp Paul P.M.2,Korenbrot Juan I.1

Affiliation:

1. Department of Physiology, School of Medicine, University of California San Francisco, San Francisco, CA 94143

2. Department of Physiology and Biophysics, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada

Abstract

Light-dependent changes in cytoplasmic free Ca2+ are much faster in the outer segment of cone than rod photoreceptors in the vertebrate retina. In the limit, this rate is determined by the activity of an electrogenic Na+/Ca2+ exchanger located in the outer segment plasma membrane. We investigate the functional properties of the exchanger activity in intact, single cone photoreceptors isolated from striped bass retina. Exchanger function is characterized through analysis both of the electrogenic exchanger current and cytoplasmic free Ca2+ measured with optical probes. The exchanger in cones is K+ dependent and operates both in forward and reverse modes. In the reverse mode, the K+ dependence of the exchanger is described by binding to a single site with K1/2 about 3.6 mM. From the retina of the fish we cloned exchanger molecules bassNCKX1 and bassNCKX2. BassNCKX1 is a single class of molecules, homologous to exchangers previously cloned from mammalian rods. BassNCKX2 exists in four splice variants that differ from each other by small sequence differences in the single, large cytoplasmic loop characteristic of these molecules. We used RT-PCR (reverse transcriptase polymerase chain reaction) of individual cells to identify the exchanger molecule specifically expressed in bass single and twin cone photoreceptors. Each and every one of the four bassNCKX2 splice variants is expressed in both single and twin cones indistinguishably. BassNCKX1 is not expressed in cones and, by exclusion, it is likely to be an exchanger expressed in rods.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3