Affiliation:
1. Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103
2. Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
3. Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati School of Medicine, Cincinnati, Ohio 45267
Abstract
Na,K -ATPase containing the amino acid substitution glutamate to alanine at position 779 of the α subunit (Glu779Ala) supports a high level of Na-ATPase and electrogenic Na+–Na+ exchange activityin the absence of K +. In microsomal preparations of Glu779Ala enzyme, the Na+ concentration for half maximal activation of Na-ATPase activity was 161 ± 14 mM (n = 3). Furthermore, enzyme activity with 800 mM Na+ was found to be similar in the presence and absence of 20 mM K +. These results showed that Na+, with low affinity, could stimulate enzyme turnover as effectively as K +. To gain further insight into the mechanism of this enzyme activity, HeLa cells expressing Glu779Ala enzyme were voltage clamped with patch electrodes containing 115 mM Na+ during superfusion in K +-free solutions. Electrogenic Na+–Na+ exchange was observed as an ouabain-inhibitable outward current whose amplitude was proportional to extracellular Na+ (Na+o) concentration. At all Na+o concentrations tested (3–148 mM), exchange current was maximal at negative membrane potentials (VM), but decreased as VM became more positive. Analyzing this current at each VM with a Hill equation showed that Na+–Na+ exchange had a high-affinity, low-capacity component with an apparent Na+o affinity at 0 mV (K 00.5) of 13.4 ± 0.6 mM and a low-affinity, high-capacity component with a K 00.5 of 120 ± 13 mM (n = 17). Both high- and low-affinity exchange components were VM dependent, dissipating 30 ± 3% and 82 ± 6% (n = 17) of the membrane dielectric, respectively. The low-affinity, but not the high-affinity exchange component was inhibited with 2 mM free ADP in the patch electrode solution. These results suggest that the high-affinity component of electrogenic Na+–Na+ exchange could be explained by Na+o acting as a low-affinity K + congener; however, the low-affinity component of electrogenic exchange appeared to be due to forward enzyme cycling activated by Na+o binding at a Na+-specific site deep in the membrane dielectric. A pseudo six-state model for the Na,K -ATPase was developed to simulate these data and the results of the accompanying paper (Peluffo, R.D., J.M. Argüello, and J.R. Berlin. 2000. J. Gen. Physiol. 116:47–59). This model showed that alterations in the kinetics of extracellular ion-dependent reactions alone could explain the effects of Glu779Ala substitution on the Na,K -ATPase.
Publisher
Rockefeller University Press
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献