Electric current generated by squid giant axon sodium pump: external K and internal ADP effects

Author:

Abercrombie R. F.,de Weer P.

Abstract

The operation of the sodium pump of giant axons of the squid, Loligo pealei, has been studied simultaneously in two independent ways: 1) by measuring sodium efflux with 22Na, and 2) by calculating the transmembrane current generated by the pump from measurements of membrane resistance and digitalis-sensitive membrane potential. In normal, untreated axons, the effect of increasing the external potassium concentration on both sodium efflux and pump current is similar, which suggests that Na:K pump stoichiometry remains relatively constant in the range of 0-20 mM external K. The data are compatible with a 3:2 Na:K ratio. In axons whose intracellular ADP level has been elevated by injection of L-arginine, a large, electrically silent, cardiotonic steroid-sensitive sodium efflux takes place in the absence of external potassium; this suggests that pump-mediated Na:Na exchange is 1:1 or electroneutral. Finally, elevation of external potassium levels causes the appearance, in high-ADP axons, of electrogenic pumping, with little effect on sodium efflux; hence, in contrast to what is seen in normal (low-ADP) axons, the charge translocated, per sodium ion extruded, increases sharply with increasing extracellular potassium levels.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Na+,K+-ATPase and its stoichiometric ratio: some thermodynamic speculations;Biophysical Reviews;2023-07-17

2. Esophageal Dysmotility in Patients following Total Laryngectomy;Otolaryngology–Head and Neck Surgery;2017-12-12

3. Longitudinal muscle of the esophagus;Current Opinion in Gastroenterology;2013-06

4. Longitudinal Muscle Dysfunction in Achalasia Esophagus and Its Relevance;Journal of Neurogastroenterology and Motility;2013-04-30

5. Esophageal Motor Physiology;Principles of Deglutition;2012-07-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3