THE EFFECT OF SPECIFIC POISONS UPON THE PHOTO-REDUCTION WITH HYDROGEN IN GREEN ALGAE

Author:

Gaffron Hans1

Affiliation:

1. From the Department of Chemistry, The University of Chicago, Chicago

Abstract

1. The effect of poisons upon the photoreduction with hydrogen in Scenedesmus and similar algae has been studied. The poisons used were cyanide, hydroxylamine, dinitrophenol, and carbon monoxide, substances known to inhibit more or less specifically certain enzymatic reactions. 2. It was found that quite generally one has to distinguish between the action of poisons upon the photoreduction in the stationary state, once this type of metabolism has been well established in the cells, and their effects on transition phenomena, on the "adaptation" and its reversal, the "turnback" from photoreduction to photosynthesis. 3. Cyanide inhibits photoreduction more strongly than it inhibits photosynthesis in the same algae. It is concluded that the mechanism of oxygen liberation, which is idle in photoreduction, is not very sensitive to cyanide. 4. Hydroxylamine in low concentrations is a powerful inhibitor of photosynthesis but has practically no influence on the rate of photoreduction. Consequently, it is assumed that it acts in photosynthesis mainly by inhibiting the evolution of oxygen. Greater concentrations of hydroxylamine clearly inhibit photoreduction, but diminish the rate to about one-half only. A greater degree of inhibition is obtained only by prolonged incubation. 5. Dinitrophenol was found to inhibit strongly the reduction of carbon dioxide, under aerobic as well as under anaerobic conditions. A stimulating effect of dinitrophenol can be demonstrated only with respiration or fermentation, not with photosynthesis. 6. Carbon monoxide interferes with all phases of the hydrogen metabolism in algae. It is supposed therefore to be a specific inhibitor for the hydrogenase system. 7. The "adaptation" to the hydrogen metabolism, which takes place if the algae are incubated anaerobically in hydrogen for several hours, is inhibited completely by very small amounts of cyanide. The adaptation reaction is more sensitive to cyanide than most of the other metabolic processes in the same cell. Correspondingly cyanide enhances the return to aerobic conditions, the "turnback," which occurs under the influence of light of high intensities. 8. Hydroxylamine, applied aerobically, inhibits the adaptation reaction to about the same degree as it inhibits photosynthesis. Photoreduction proceeds after the adaptation in presence of hydroxylamine only at a fraction of the rate that it would have if the poison were added later. 9. Hydroxylamine in concentrations of 10–3 M protects the anaerobic metabolism against the return to aerobic photosynthesis which normally occurs under the influence of light of too high intensity. The protection is only relative and the higher the light intensity the more hydroxylamine is needed to keep photoreduction going. Once a "turnback" occurs in presence of much hydroxylamine all photochemical gas exchange comes to an end.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3