The Alga Uronema belkae Has Two Structural Types of [FeFe]-Hydrogenases with Different Biochemical Properties

Author:

Alavi Ghazal1,Engelbrecht Vera1,Hemschemeier Anja1ORCID,Happe Thomas1

Affiliation:

1. Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, 44801 Bochum, Germany

Abstract

Several species of microalgae can convert light energy into molecular hydrogen (H2) by employing enzymes of early phylogenetic origin, [FeFe]-hydrogenases, coupled to the photosynthetic electron transport chain. Bacterial [FeFe]-hydrogenases consist of a conserved domain that harbors the active site cofactor, the H-domain, and an additional domain that binds electron-conducting FeS clusters, the F-domain. In contrast, most algal hydrogenases characterized so far have a structurally reduced, so-termed M1-type architecture, which consists only of the H-domain that interacts directly with photosynthetic ferredoxin PetF as an electron donor. To date, only a few algal species are known to contain bacterial-type [FeFe]-hydrogenases, and no M1-type enzymes have been identified in these species. Here, we show that the chlorophycean alga Uronema belkae possesses both bacterial-type and algal-type [FeFe]-hydrogenases. Both hydrogenase genes are transcribed, and the cells produce H2 under hypoxic conditions. The biochemical analyses show that the two enzymes show features typical for each of the two [FeFe]-hydrogenase types. Most notable in the physiological context is that the bacterial-type hydrogenase does not interact with PetF proteins, suggesting that the two enzymes are integrated differently into the alga’s metabolism.

Funder

German Academic Exchange Service

Studienstiftung des Deutschen Volkes

Deutsche Forschungsgemeinschaft

VolkswagenStiftung

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3