Subconductance States of a Mutant NMDA Receptor Channel Kinetics, Calcium, and Voltage Dependence

Author:

Premkumar Louis S.1,Qin Feng1,Auerbach Anthony1

Affiliation:

1. From the Department of Biophysical Sciences, State University of New York at Buffalo, Buffalo, New York 14214

Abstract

The kinetic properties of main and subconductance states of a mutant mouse N-methyl-d-aspartate (NMDA) receptor channel were examined. Recombinant receptors made of ζ-ε2 (NR1-NR2B) subunits having asparagine-to-glutamine mutations in the M2 segment (ζN598Q /ε2N589Q) were expressed in Xenopus oocytes. Single channel currents recorded from outside-out patches were analyzed using hidden Markov model techniques. In Ca2+-free solutions, an open receptor channel occupies a main conductance (93 pS) and a subconductance (62 pS) with about equal probability. There are both brief and long-lived subconductance states, but only a single main level state. At −80 mV, the lifetime of the main and the longer-lived sub level are both ∼3.3 ms. The gating of the pore and the transition between conductance levels are essentially independent processes. Surprisingly, hyperpolarization speeds both the sub-to-main and main-to-sub transition rate constants (∼120 mV/e-fold change), but does not alter the equilibrium occupancies. Extracellular Ca2+ does not influence the transition rate constants. We conclude that the subconductance levels arise from fluctuations in the energetics of ion permeation through a single pore, and that the voltage dependence of these fluctuations reflects the modulation by the membrane potential of the barrier between the main and subconductance conformations of the pore.

Publisher

Rockefeller University Press

Subject

Physiology

Reference28 articles.

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3