Blocker-related changes of channel density. Analysis of a three-state model for apical Na channels of frog skin.

Author:

Helman S I1,Baxendale L M1

Affiliation:

1. Department of Physiology and Biophysics, University of Illinois, Urbana 61801.

Abstract

Blocker-induced noise analysis of apical membrane Na channels of epithelia of frog skin was carried out with the electroneutral blocker (CDPC, 6-chloro-3,5-diamino-pyrazine-2-carboxamide) that permitted determination of the changes of single-channel Na currents and channel densities with minimal inhibition of the macroscopic rates of Na transport (Baxendale, L. M., and S. I. Helman. 1986. Biophys. J. 49:160a). Experiments were designed to resolve changes of channel densities due to mass law action (and hence the kinetic scheme of blocker interaction with the Na channel) and to autoregulation of Na channel densities that occur as a consequence of inhibition of Na transport. Mass law action changes of channel densities conformed to a kinetic scheme of closed, open, and blocked states where blocker interacts predominantly if not solely with open channels. Such behavior was best observed in "pulse" protocol experiments that minimized the time of exposure to blocker and thus minimized the contribution of much longer time constant autoregulatory influences on channel densities. Analysis of data derived from pulse, staircase, and other experimental protocols using both CDPC and amiloride as noise-inducing blockers and interpreted within the context of a three-state model revealed that Na channel open probability in the absence of blocker averaged near 0.5 with a wide range among tissues between 0.1 and 0.9.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3