Effect of apical hyperosmotic sodium challenge and amiloride on sodium transport in human bronchial epithelial cells from cystic fibrosis donors

Author:

Rasgado-Flores Hector1,Krishna Mandava Vamsi1,Siman Homayoun1,Van Driessche Willy2,Pilewski Joseph M.3,Randell Scott H.4,Bridges Robert J.1

Affiliation:

1. Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois;

2. Department of Molecular Cell Biology, University of Leuven, Leuven, Belgium;

3. Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and

4. Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina

Abstract

Hypertonic saline (HS) inhalation therapy benefits cystic fibrosis (CF) patients [Donaldson SH, Bennet WD, Zeman KL, Knowles MR, Tarran R, Boucher RC. N Engl J Med 354: 241–250, 2006; Elkins MR, Robinson M, Rose BR, Harbour C, Moriarty CP, Marks GB, Belousova EG, Xuan W, Bye PT; the National Hypertonic Saline in Cystic Fibrosis (NHSCF) Study Group. N Engl J Med 354: 229–240, 2006]. Surprisingly, these benefits are long-lasting and are diminished by the epithelial Na+ channel blocker amiloride (Donaldson SH, Bennet WD, Zeman KL, Knowles MR, Tarran R, Boucher RC. N Engl J Med 354: 241–250, 2006). Our aim was to explain these effects. Human bronchial epithelial (hBE) cells from CF lungs were grown in inserts and were used in three experimental approaches: 1) Ussing chambers to measure amiloride-sensitive short-circuit currents ( INa); 2) continuous perfusion Ussing chambers; and 3) near “thin-film” conditions in which the airway surface of the inserts was exposed to a small volume (30 μl) of isosmotic or HS solution as the inserts were kept in their incubation tray and were subsequently used to measure INa under isosmotic conditions (near thin-film experiments; Tarran R, Boucher RC. Methods Mol Med 70: 479–492, 2002). HS solutions (660 mosmol/kgH2O) were prepared by adding additional NaCl to the isosmotic buffer. The transepithelial short-circuit current ( ISC), conductance ( GT), and capacitance ( CT) were measured by transepithelial impedance analysis (Danahay H, Atherton HC, Jackson AD, Kreindler JL, Poll CT, Bridges RJ. Am J Physiol Lung Cell Mol Physiol 290: L558–L569, 2006; Singh AK, Singh S, Devor DC, Frizzell RA, van Driessche W, Bridges RJ. Methods Mol Med 70: 129–142, 2002). Exposure to apical HS inhibited INa, GT, and CT. The INa inhibition required 60 min of reexposure to the isosmotic solution to recover 75%. The time of exposure to HS required to inhibit INa was <2.5 min. Under near thin-film conditions, apical exposure to HS inhibited INa, but as osmotically driven water moved to the apical surface, the aqueous apical volume increased, leading to an amiloride-insensitive decrease in its osmolality and to recovery of INa that lagged behind the osmotic recovery. Amiloride significantly accelerated the recovery of INa following exposure to HS. Our conclusions are that exposure to HS inhibits hBE INa and that amiloride diminishes this effect.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3