Proton transfers in aromatic systems: How aromatic is the transition state?

Author:

Bernasconi Claude F.1

Affiliation:

1. 1Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA

Abstract

The question as to what extent aromaticity in a reactant or product is expressed in the transition state of a reaction has only recently received serious attention. Inasmuch as aromaticity is related to resonance, one might expect that, in a reaction that leads to aromatic products, its development at the transition state should lag behind bond changes as is invariably the case for the development of resonance in reactions that lead to delocalized products. However, recent experimental and computational studies on proton transfers from carbon acids suggest the opposite behavior, i.e., the development of aromaticity at the transition state ismoreadvanced than the proton transfer. The evidence for this claim is based on the determination of intrinsic barriers that show a decrease with increasing aromaticity. According to the Principle of Nonperfect Synchronization (PNS), this decrease in the intrinsic barrier implies a disproportionately large amount of aromatic stabilization of the transition state. Additional evidence for the high degree of transition state aromaticity comes from the calculation of aromaticity indices such as HOMA, NICS, and the Bird Index. Possible reasons why the degree to which aromaticity and resonance are expressed at the transition state is different are discussed.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3