Speciation and isotope pattern deconvolution for inductively coupled plasma-mass spectrometry quantitative studies of mineral metabolism and supplementation

Author:

Sanz-Medel Alfredo1,Fernández-Sánchez Maria Luisa1,González Iglesias Héctor1,López-Sastre José Blas2

Affiliation:

1. 1Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain

2. 2Department of Neonatology, Hospital Central of Asturias, Oviedo, Spain

Abstract

Human breast milk can be considered as “ideal” food for the correct development of newborn babies and, for those that are not breast-fed, formula milk has to be used instead. Ideally, the composition of such formula milk preparations should closely resemble that of maternal human milk. Considerable differences between both in the total content of trace elements such as Fe, Cu, Se, Zn, and I and in their chemical form in both milk types have been demonstrated. Speciation analysis in milk whey was carried out first by high-performance liquid chromatography (HPLC) with inductively coupled plasma-mass spectrometry (ICP-MS) elemental detection and showed that the observed element distribution patterns were very different in the investigated human and formula milks. Using complementary molecular mass techniques (i.e., MALDI-TOF), the identity and chemical characterization of some biomolecules (e.g., protein) with which metals are associated in each fraction was also established (by a typical heteroatom-tagged proteomics protocol). Attempts to assess the nutritional value of elemental supplements in formula milk with the aid of quantitative chemical speciation, using stable isotopes in combination with ICP-MS and isotope pattern deconvolution (IPD), proved to be successful to differentiate and quantify endogenous (natural) and exogenous (supplemented) Se or Fe trace levels. In particular, the application of such ICP-MS based techniques to study Se bioavailability from formula milk and metabolism in Se-supplemented lactating rats is discussed in detail. Quantification of selenospecies of endogenous (natural) and exogenous (supplement) Se in rat’s urine is demonstrated and relevant information on possible Se biotransformations and its final catabolism from such results is discussed.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Reference29 articles.

1. Stable Isotopes in Human Laboratory Research Applications Publishing;Abrams;Nutrition Methods,2003

2. At;Taylor;Anal,1039

3. aca;Meija;Mester Anal Chim Acta,2007

4. At;Rodríguez;Anal,1039

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3