Use of phytofiltration technologies in the removal of heavy metals: A review

Author:

Gardea-Torresdey J. L.1,de la Rosa G.1,Peralta-Videa J. R.1

Affiliation:

1. 1Chemistry Department and Environmental Science and Engineering Ph.D. Program, University of Texas at El Paso, El Paso, TX 79968, USA

Abstract

Biosorption is a relatively new process that has proven very promising in the removal of contaminants from aqueous effluents. Microorganisms as well as plant- and animal-derived materials have been used as biosorbents by many researchers. Biomaterial immobilization and chemical modification improves the adsorption capacity and stability of biosorbents. Biosorption experiments over Cu(II), Cd(II), Pb(II), Cr(III), and Ni(II) demonstrated that biomass Cu(II) adsorption ranged from 8.09 to 45.9 mg g−1, while Cd(II) and Cr(VI) adsorption ranged from 0.4 to 10.8 mg g−1 and from 1.47 to 119 mg g−1, respectively. Mechanisms involved in the biosorption process include chemisorption, complexation, surface and pore adsorption-complexation, ion exchange, microprecipitation, hydroxide condensation onto the biosurface, and surface adsorption. Chemical modification and spectroscopic studies have shown that cellular components including carboxyl, hydroxyl, sulfate, sulfhydryl, phosphate, amino, amide, imine, and imidazol moieties have metal binding properties and are therefore the functional groups in the biomass. Column studies using support matrices for biomass immobilization such as silica, agar, polyacrilamide, polysulfone, alginates, cellulase, and different cross-linking agents have been performed to improve the biomass adsorption capacity and reusability. In this review, the salient features of plant-derived materials are highlighted as potential phytofiltration sources in the recovery of toxic heavy and precious metals.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3