Can machine learning improve prediction – an application with farm survey data

Author:

Ifft Jennifer1,Kuhns Ryan2,Patrick Kevin3

Affiliation:

1. Assistant Professor, Charles H. Dyson School of Applied Economics and Management, Cornell University, 451B Warren Hall, Ithaca, NY 14853, USA.

2. Economist, Farmer Mac, 1999 K Street NW, 4th Floor, Washington, DC 20006, USA.

3. Lead Technologist/Data Scientist, Booz Allen, 901 15th St NW, Washington, DC 20005, USA.

Abstract

Businesses, researchers, and policymakers in the agricultural and food sector regularly make use of large public, private, and administrative datasets for prediction, including forecasting, public policy targeting, and management research. Machine learning has the potential to substantially improve prediction with these datasets. In this study we demonstrate and evaluate several machine learning models for predicting demand for new credit with the 2014 Agricultural Resource Management Survey. Many, but not all, of the machine learning models used are shown to have stronger predictive power than standard econometric approaches. We provide a cost based model evaluation approach for managers to analyze returns to machine learning methods relative to standard econometric approaches. While there are potentially significant returns to machine learning methods, research objectives and firm-level costs are important considerations that in some cases may favor standard econometric approaches.

Publisher

Wageningen Academic Publishers

Subject

General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3