Machine Learning to Predict Recommendation by Tourists in a Spanish Province

Author:

Aparicio Castillo Santiago1,Basurto Hornillos Nuño2,Arranz Val Pablo1,Antón Maraña Paula1,Herrero Cosío Álvaro2

Affiliation:

1. Department of Applied Economics, Faculty of Economics and Business Studies, University of Burgos, Pza. de la Infanta Da. Elena s/n, 09001 Burgos, Spain

2. Department of Computer Engineering, Polytechnic School, University of Burgos, Avda. Cantabria s/n, 09006 Burgos, Spain

Abstract

The analysis of the opinions and experiences of tourists is a key issue in tourist promotion. More precisely, forecasting whether a tourist will or will not recommend a given destination, based on his/her profile, is of utmost importance in order to optimize management actions. According to this idea, this research proposes the application of cutting-edge machine learning techniques in order to predict tourist recommendation of rural destinations. More precisely, classifiers based on supervised learning (namely Support Vector Machine, Decision Trees, and [Formula: see text]-Nearest Neighbor) are applied to survey data collected in the province of Burgos (Spain). Available data suffer from a common problem in real-life datasets (data unbalance) as there are very few negative recommendations. In order to address such problem, that penalizes learning, data balancing techniques have been also applied. The satisfactory results validate the proposed application, being a useful tool for tourist managers.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine learning applied to tourism: A systematic review;WIREs Data Mining and Knowledge Discovery;2024-07-04

2. Assessing the role of technology in enhancing the authentic tourist experience;EuroMed Journal of Business;2024-06-21

3. Optimal Planning Method of Rural Tourism Route Based on Multi Constraint and Multi Objective;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

4. Research and Implementation of Fusion Machine Learning Algorithm in Tourism Recommendation;2023 3rd International Conference on Intelligent Technologies (CONIT);2023-06-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3