Application of the Support Vector Machine and Neural Network Model Based on Particle Swarm Optimization for Breast Cancer Prediction

Author:

Purwaningsih Esty

Abstract

There are several studies in the medical field that classify data to diagnose and analyze decisions. To predict breast cancer, this study compares two methods, the Support Vector Machine method and the Neural Network method based on Particle Swarm Optimization (PSO) which is intended to determine the highest accuracy value in the Coimbra dataset data. To implement the Support Vector Machine and Neural Network method based on PSO, RapidMiner software is used. Then the application results are compared using Confusion Matrix and ROC Curve. Based on the accuracy of the two models, it is known that the PSO-based Neural Network model has a higher accuracy value of 84.55% than the results of the PSO-based Vector Support Machine with an accuracy value of 80.08%. The calculation results, the accuracy of the AUC performance obtained by the results of the study are, the two methods are PSO-based Neural Network with AUC value of 0.885 and PSO-based Support Vector Machine with a value of 0.819 included in the category of Good Classification.

Publisher

Politeknik Ganesha

Reference13 articles.

1. . Using Machine Learning Algorithms for Breast Cancer Risk Prediction and Diagnosis;Asria;Procedia Computer Science 83 1064-1069 Retrieved from https,2016

2. Biro Komunikasi dan Pelayanan Masyarakat, K. K. R. (2019). Kementerian Kesehatan Republik Indonesia. Retrieved September 3, 2019, from Biro Komunikasi dan Pelayanan Masyarakat, Kementerian Kesehatan RI website: http://www.depkes.go.id/article/view/19020100003/hari-kanker-sedunia-2019.html

3. Cao, J., Cui, H., Shi, H., & Jiao, L. (2016). Big data: A parallel particle swarm optimization-back-propagation neural network algorithm based on MapReduce. PLoS ONE, 11(6), 1-17. https://doi.org/10.1371/journal.pone.0157551

4. Harafani, H. (2015). Optimasi Parameter pada Support Vector Machine Berbasis Algoritma Genetika untuk Estimasi Kebakaran Hutan. Journal of Intelligent Systems, 1(2), 82-90.

5. Maimon, Oded&Rokach, L. (2010). Data Mining and Knowledge Discovey Handbook. New York: Springer.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chronic Disease Prediction using Data Mining and Machine Learning Algorithm;2022 5th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI);2022-12-08

2. Support Vector Machine Parameter Optimization to Improve Liver Disease Estimation with Genetic Algorithm;SinkrOn;2020-04-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3