Support Vector Machine Parameter Optimization to Improve Liver Disease Estimation with Genetic Algorithm

Author:

Harafani Hani

Abstract

Liver disease is an important public health problem. Over the past few decades, machine learning has developed rapidly and it has been introduced for application in medical-related. In this study we propose Support Vector Machine optimization parameter with genetic algorithm to get a higher performance of Root Mean Square Error value of SVM in order to estimate the liver disorder. The experiment was carried out in three stages, the first step was to try the three SVM kernels with different combination of parameters manually, The second step was to try some combination of range parameters in the genetic algorithm to find the optimal value in the SVM kernel. The third step is comparing the results of the GA-SVM experiment with other regression methods. The results prove that GA has an influence on improving the performance of GA-SVM which has the lowest RMSE value compared to another regression models.

Publisher

Politeknik Ganesha

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Liver Disease Prediction Model Using SVM and Logistic Regression;2023 2nd International Conference on Edge Computing and Applications (ICECAA);2023-07-19

2. Improving machine learning performance using exponential smoothing for liver disease estimation;AIP Conference Proceedings;2023

3. Neural network parameters optimization with genetic algorithm to improve liver disease estimation;Journal of Physics: Conference Series;2020-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3