Augmented reality learning media based on tetrahedral chemical representation: How effective in learning process?

Author:

Yamtinah Sri1ORCID,Susanti VH Elfi1ORCID,Saputro Sulistyo1ORCID,Ariani Sri Retno Dwi1ORCID,Shidiq Ari Syahidul1ORCID,Sari Dwi Retno1ORCID,Ilyasa Deiya Gama1ORCID

Affiliation:

1. Department of Chemistry Education, Universitas Sebelas Maret, Surakarta, Central Java, INDONESIA

Abstract

The implementation of technology in the era of Society 5.0 runs massively in the world of education. One of them is in the form of augmented reality (AR) learning media. AR technology that can visualize abstract chemical topics in line with the concept of tetrahedral chemical representation. Therefore, this study aims to design and test the effectiveness of AR learning media based on tetrahedral chemical representation. This study used research and development methods with ADDIE (analysis, design, development, implementation, and evaluation) model. The topic of chemical equilibrium chemistry was chosen in this study to develop AR media. This research was conducted in three representative schools in Surakarta, Central Java, Indonesia. A total of 168 students from three representative schools (66 male and 102 female) participated as subjects in the Implementation stage. In addition, a multiple-choice instrument with 24 parallel questions on the pre- and post-test was used to determine the effect of the developed media on the experimental and control classes. The results showed that the design of AR learning media based on tetrahedral chemical representations was successfully developed and proved effective in improving learning outcomes. Student response sheets are given after using the media to find user experience regarding the strength and weaknesses of AR media.

Publisher

Modestum Ltd

Subject

Applied Mathematics,Education

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey on Implementing Augmented Reality in Learning Data Structures;International Journal of Advanced Research in Science, Communication and Technology;2024-02-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3