On the emergence of a predicted climate change signal: When and where it could appear over Pakistan

Author:

Khan Burhan Ahmad1ORCID,Wazir Atif1ORCID,Bokhari Syed Ahsan Ali1ORCID,Haider Sajjad1ORCID,Karori Muhammad Afzaal1ORCID

Affiliation:

1. Research and Development Division, Pakistan Meteorological Department, Islamabad, PAKISTAN

Abstract

Emergence of climate change signal attributed to change in mean temperature can bring serious implications to economic stability of developing countries like Pakistan. Likewise, unawareness of vulnerability in regions of a country can direct mitigation efforts towards unwanted areas instead of towards ones that are genuinely deprived of. To address these two issues for Pakistan, we adopted a compendium of five metrics by using climate model data of near surface mean monthly temperature from output of a general circulation model MRI-ESM2-0 of Meteorological Research Institute (MRI), simulated under historical (1850-2014) and projected (2015-2100) periods for five shared socioeconomic pathways (SSPs) described in the sixth assessment report (AR6) of the Intergovernmental Panel on Climate Change (IPCC) originally published in the year 2021. To identify potential hotspot regions, we used four out of the five metrics i.e., change in mean (DM–vulnerability metric), standard Euclidean distance (SED–vulnerability metric), change in standard deviation (DSD–stability metric), and standard score (Z-Score–stability metric) statistics for regional bounds of Pakistan. To investigate emergence of climate change signal, we computed the fifth metric viz. signal to noise ratio (SNR–agility metric) from time series of the near surface mean monthly temperature and checked how rapidly the subject signal emerged out of variability in the studied data under different scenarios. On the estimation of vulnerability and stability, our results revealed that the Himalayan region of Pakistan (the northeast corner) repeatedly appeared to be the most qualified region to be acclaimed as a hotspot due to its reach to optimal echelons in the associated metrics of the DM (more than four degrees), the SED (up to one), the DSD (close to null) and the Z-Score (close to null) under all the studied SSP scenarios. On the estimation of agility, our results revealed that owing to allegedly sustainable scenarios (with low to medium challenges to mitigation), the SSP1, the SSP2, and the SSP4 delayed the evolution of climate change signal (between 2070 to 2100) by at least two decades as compared to allegedly perplexing (high challenges to mitigation) SSP3 and SSP5 scenarios that accelerated the appearance of the signal by crossing the SNR threshold fairly earlier (between 2040 to 2060) in the 21<sup>st</sup> century. With such knowledge at hand, this scientific contribution can advise policymakers and stakeholder agencies to exercise conversant decisions and to equip themselves with evidence to prioritize and target their resources in an informed way over Pakistan region.

Publisher

Modestum Ltd

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3