Data Preprocessing: The Techniques for Preparing Clean and Quality Data for Data Analytics Process

Author:

Joshi Ashish P.1ORCID,Patel Biraj V.2ORCID

Affiliation:

1. 1Assistant Professor, BCA Department, Vitthalbhai Patel and Rajratna P.T. Patel Science College, Sardar Patel University, Vallabh Vidyanagar-388120 , India

2. 2G.H.Patel Department of Computer Science and Technology, Sardar Patel University, Vallabh Vidyanagar-388120, India

Abstract

The model and pattern for real time data mining have an important role for decision making. The meaningful real time data mining is basically depends on the quality of data while row or rough data available at warehouse. The data available at warehouse can be in any format, it may huge or it may unstructured. These kinds of data require some process to enhance the efficiency of data analysis. The process to make it ready to use is called data preprocessing. There can be many activities for data preprocessing such as data transformation, data cleaning, data integration, data optimization and data conversion which are use to converting the rough data to quality data. The data preprocessing techniques are the vital step for the data mining. The analyzed result will be good as far as data quality is good. This paper is about the different data preprocessing techniques which can be use for preparing the quality data for the data analysis for the available rough data.

Publisher

Oriental Scientific Publishing Company

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference8 articles.

1. Suad A. Alasadi and Wesam S. Bhaya, “Review of Data Preprocessing techniques in data mining” – Journal of Engineering and Apllied Sciences, 1816-949X

2. Dharmarajan R and R.Vijayashanthi, “An overview on data preprocessing methods in data mining” – International journal of Science and Research, 3544-3546

3. Tomar D. and S. Agarwal, “ A survey on preprocessing and post processing techniques in data mining” – International Journal of database theory application, 99-128.

4. S. B. Kotsiantis, D. Kanellopoulos and P. E. Pintelas, “Data Preprocessing for Supervised Leaning” – INTERNATIONAL JOURNAL OF COMPUTER SCIENCE ISSN 1306-4428

5. Vivek Agarwal, “Research on Data Preprocessing and Categorization Technique for Smartphone Review Analysis” – International Journal of Computer Applications (0975 – 8887)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3