Experimental and Theoretical Studies on the Molecular Structure, FT-IR, NMR, HOMO, LUMO, MESP, and Reactivity Descriptors of (E)-1-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one

Author:

Ashok Shinde Rahul1ORCID,shok Adole Vishnu A2ORCID,Sonu Jagdale Bapu1ORCID,Bhavsing Pawar Thansing1

Affiliation:

1. Department of Chemistry, Mahatma Gandhi Vidyamandir’s Loknete Vyankatrao Hiray Arts, Science and Commerce College Panchavati (Affiliated to SP Pune University, Pune), Nashik-422 003, India

2. Department of Chemistry, Mahatma Gandhi Vidyamandir’s Arts, Science and Commerce College (Affiliated to Savitribai Phule Pune University, Pune), Manmad-423104, India

Abstract

The present research deals with the synthesis, characterization and density functional theory (DFT) study of (E)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (DTMPP). For the computational investigation, DFT method at B3LYP/6-311++G(d,p) basis set has been used. Herein, structural properties like molecular structure, bond lengths, and bond angles of the DTMPP have been explored. The all-important examination of the electronic properties; HOMO and LUMO energies were studied by the time-dependent DFT (TD-DFT) method. The experimental and theoretical spectroscopic Investigation on FT-IR, 1HNMR, 13C NMR has been unveiled in the present research. To study the chemical behaviour of the DTMPP, Mulliken atomic charges, molecular electrostatic surface potential, and reactivity descriptors have been explored. The dipole moment of the DTMPP is 1.27 Debye with C1 point group symmetry and -1225.77 a.u. E(B3LYP) energy. The most electropositive carbon and hydrogen atoms in the DTMPP are C14 and H27 respectively. The C1-C6 bond is the longest (1.4089 Å) C=C bond in the DTMPP. The oxygen atom O33 is having short contact interaction with the hydrogen atom H44 with a distance of 3.3258 Å. The molecular electrostatic potential plot predicts the positive electrostatic potential is around hydrogen atoms. The FT-IR assignments were made by comparing the experimental FT-IR absorption peaks with the scaled frequencies obtained using DFT method. Furthermore, some valuable insights on thermochemical data are obtained using the harmonic frequencies at same basis set.

Publisher

Oriental Scientific Publishing Company

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Reference116 articles.

1. Structural properties like molecular structure, bond lengths, and bond angles of the DTMPP have been investigated. The DTMPP has aromatic C=C bond lengths from 1.39 Å to 1.40 Å. The alkene (C10=C12) bond is 1.3447 Å long and the carbonyl (C14-O15) bond is 1.2249 Å in length. The C1-C6 bond is the longest (1.4089 Å) C=C bond in the DTMPP. The oxygen atom O33 is having short contact interaction with the hydrogen atom H44 with a distance of 3.3258 Å.

2. Mulliken atomic charges uncover that all hydrogen atoms possess net positive charge but H40 atom has a more positive charge (0.131720) than other hydrogen atoms and thusly exceptionally acidic. The C14 atom has the most noteworthy net positive charge (0.258693) and the C16 is the most electronegative carbon (- 0.172547).

3. The MESP plot of the DTMPP proposes that the electrophilic attacks are feasible at both aromatic rings; However, ring C is more prone to the attack of electrophiles. The positive potential is around hydrogen atoms.

4. The HOMO in the DTMPP is essentially situated at ring B and C. The LUMO is fundamentally arranged at the enone part of the unsaturated framework. The energy gap in the DTMPP is 3.783 eV which uncovers inescapable charge transfer phenomena occuring within the molecule.

5. The absorption wavelength, oscillator strength, and transitions of DTMPP were computed at TD-B3LYP/6-311++G(d,p) level of theory for B3LYP/6-311G ++(d,p) basis set. The UV-Visible spectrum was computed for six excited states. The first excited state absorption wavelength is 375.83 nm with excitation energy of 3.2990 eV and oscillator strength (ƒ), 0.0035. With increase in the number of excited state, there is decrease in the absorption wavelength and increase in the excitation energy.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3