Computational Study on Molecular Structure, UV-Visible and Vibrational Spectra and Frontier Molecular Orbital Analysis of (E)-7-((2-Chloroquinolin-3-yl)methylene)-1,2,6,7-tetrahydro-8H-indeno[5,4-b]furan-8-one

Author:

Adole Vishnu A.1,Bukane Abhijit R.1,Waghchaure Ravindra H.2,Shinde Rohit S.2,Jagdale Bapu S.1

Affiliation:

1. Department of Chemistry, Mahatma Gandhi Vidyamandir’s Arts, Science and Commerce College, Manmad, Nashik - 423104, India (Affiliated to SP Pune University, Pune)

2. Department of Chemistry, Mahant Jamanadas Maharaj Arts, Commerce and Science College, Karanjali, Taluka - Peth, District – Nashik - 422 208, India (Affiliated to SP Pune University, Pune)

Abstract

Quinoline scaffold is one of the most often perceived parts in biologically active organic compounds. In light of this, an quinoline containing 2-arylidene derivative; (E)-7-((2-chloroquinolin-3-yl)methylene)-1,2,6,7-tetrahydro-8H-indeno[5,4-b]furan-8-one (2-CQMIF) is studied by using density functional theory (DFT) at B3LYP/6-311G(d,p) basis set. The geometry of the 2-CQMIF molecule was optimized by using B3LYP/6-311G(d,p) basis set and in-depth structural analysis on bond lengths and bond angles has been discussed. The frontier molecular orbital (FMO) analysis and various quantum chemical parameters are calculated and discussed for the better understanding of chemical behavior of the title molecule. The theoretical and experimental UV-Visible absorption bands are compared. The TD-DFT method at B3LYP/6-311G(d,p) basis set was employed to predict the electronic excitations. The scaled theoretical vibrational assignments calculated at 6-311G(d,p) level are compared with the experimental results and the good agreement is observed between them. Molecular electrostatic potential (MEP) surface investigation is presented to understand the reactivity sites of the title molecule. Besides, some thermodynamic properties have also been computed at same level of theory.

Publisher

A and V Publications

Subject

Pharmacology (medical),Pharmacology, Toxicology and Pharmaceutics (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3