Assessment of the Enhancement for the Excitation Emission in Porous Gan using Photoluminescence

Author:

Alquran M. Kh.1ORCID

Affiliation:

1. Department of Applied Science, Ajloun University College, Al-Balqa Applied University Jordan.

Abstract

ABSTRACT: This work aims to assess the enhancement of optical properties for porous GaN nanostructures, which fabricated by Photoelectrochemical etching under different current densities. The changing of optical properties for different samples were investigated by Photoluminescence (PL) spectroscopy. A strong near band-gap-edge emission (NBE) was detected with peak energy 3.40 eV for as-grown and sample etched at 5mA/cm2, while its 3.41 and 3.42 eV for samples etched with 10 and 20mA/cm2 respectively. Also, another peak emission from the sapphire substrate at peak 1.7 eV was observed. The PL peak intensity of the porous samples have increased with increasing the porosity, while the FWHM of the near-band-edge peak was decreased in 5 and 10mA/cm2 samples compared to as-grown non-etched sample, indicated that the pore size decreased with etching current density and porosity. Finally, the change of refractive with porosity was investigated in the porous GaN nanostructure.

Publisher

Oriental Scientific Publishing Company

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3