Impact of Data Balancing and Feature Selection on Machine Learning-based Network Intrusion Detection

Author:

Barkah Azhari Shouni,Selamat Siti Rahayu,Abidin Zaheera Zainal,Wahyudi Rizki

Abstract

Unbalanced datasets are a common problem in supervised machine learning. It leads to a deeper understanding of the majority of classes in machine learning. Therefore, the machine learning model is more effective at recognizing the majority classes than the minority classes. Naturally, imbalanced data, such as disease data and data networking, has emerged in real life. DDOS is one of the network intrusions found to happen more often than R2L. There is an imbalance in the composition of network attacks in Intrusion Detection System (IDS) public datasets such as NSL-KDD and UNSW-NB15. Besides, researchers propose many techniques to transform it into balanced data by duplicating the minority class and producing synthetic data. Synthetic Minority Oversampling Technique (SMOTE) and Adaptive Synthetic (ADASYN) algorithms duplicate the data and construct synthetic data for the minority classes. Meanwhile, machine learning algorithms can capture the labeled data's pattern by considering the input features. Unfortunately, not all the input features have an equal impact on the output (predicted class or value). Some features are interrelated and misleading. Therefore, the important features should be selected to produce a good model. In this research, we implement the recursive feature elimination (RFE) technique to select important features from the available dataset. According to the experiment, SMOTE provides a better synthetic dataset than ADASYN for the UNSW-B15 dataset with a high level of imbalance. RFE feature selection slightly reduces the model's accuracy but improves the training speed. Then, the Decision Tree classifier consistently achieves a better recognition rate than Random Forest and KNN.

Publisher

Politeknik Negeri Padang

Subject

Information Systems and Management,Statistics, Probability and Uncertainty,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3