Rumen protein degradation rates estimated by non-linear regression analysis of Michaelis–Menten in vitro data

Author:

Broderick Glen A.,Clayton Murray K.

Abstract

An in vitro method applying Michaelis–Menten saturation kinetics was developed as an alternative approach for estimating protein degradation rates in the rumen. Non-linear regression (NLR) analysis of the integrated Michaelis–Menten equation yielded fractional degradation rates,kd, from direct estimates of the maximum velocity: Michaelis constant ratio (kd=Vmax:Km). Degradation rates obtained using data from a series of 2 h inhibitor in vitro incubations were respectively 0.989, 0.134, and 0.037 /h for casein, solvent soya-bean meal (SSBM) and expeller soya-bean meal (ESBM). Degradation rates obtained from 2 h incubations had lower standard errors than those obtained using 1 h incubations; 2 h rates were not significantly different from 1 h rates, suggesting end-product inhibition was not significant at 2 h. The NLR Michaelis–Menten method was used to determine degradation rates for twelve protein sources: casein, bovine serum albumin, two samples of lucerne (Medicago sativa) hay, and four samples each of SSBM and ESBM. Statistical analysis of NLR results revealed significant differences among the twelve protein sources. Casein was degraded most rapidly (0.827 /h), and the four ESBM samples most slowly (0.050–0.098 /h). Degradation rate for serum albumin was 0.135 /h; rates for SSBM and lucerne hays ranged from 0.160 to 0.208 /h. Degradation rates estimated using the NLR method were more rapid than those obtained with a limited substrate approach; NLR rates were more consistent with in vivo estimates of rumen protein escape. Greater concentrations of slowly degraded proteins were needed with the NLR method to define curvilinearity of the degradation curve more accurately.Protein degradation rate: Rumen protein escape: Michaelis–Menten kinetics: Non-linear regression

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

Reference34 articles.

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3