Passage and rumination of inert particles varying in size and specific gravity as determined from analysis of faecal appearance using multicompartment models

Author:

Murphy M. R.,Kennedy P. M.,Welch J. G.

Abstract

Plastic particles of defined length (2, 5 mm) and specific gravity (sp.gr. 1.10, 1.34, 1.77) were administered just before feeding into the reticulo-rumen of four cattle and four swamp buffaloes given a diet predominantly of rice straw ad lib. Simultaneously, doses of ground rice straw marked with Cr and Yb were likewise given. Plastic particles were recovered from faeces for 12 d after dosing, and divided into non-ruminated (NR) and ruminated (R) particles. Excretion data of plastic particles were interpreted using a four-pool model incorporating passage of NR (kp) and R from the reticulo-rumen, post-ruminal passage, rate of chewing (kr) and two lag times. An inverse relationship was found between kr and sp.gr. The kr was higher for 5 mm than that for 2 mm particles. In contrast, kp was greatest for particles of sp.gr. 1.34, with higher kp for 2 mm than for 5 mm particles. Rates of passage and rumination (kp, kr) were higher for buffaloes than for cattle. Rumination time was related to kr, most highly (r2 0.96) with kr of 2 mm, 1.10 sp.gr. particles. Fragmentation of 5 mm particles by rumination tended to increase the rate of passage from the rumen. Ruminal passage rates of Yb and Cr markers were poorly correlated with each other and with kp of any of the plastic markers. Reanalysis of published data from plastic particle studies supported the relationships between sp.gr., size, kp and kr. In view of the additional information (kr) obtained using plastic particles, we suggest their use may be appropriate in studies which investigate specific differences in digestive function, while being less suitable for investigating differences between diets.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3