Nutrition–hormone receptor–gene interactions: implications for development and disease

Author:

Dauncey M. J.,White P.,Burton K. A.,Katsumata M.

Abstract

Nutrition profoundly alters the phenotypic expression of a given genotype, particularly during fetal and postnatal development. Many hormones act as nutritional signals and their receptors play a key role in mediating the effects of nutrition on numerous genes involved in differentiation, growth and metabolism. Polypeptide hormones act on membrane-bound receptors to trigger gene transcription via complex intracellular signalling pathways. By contrast, nuclear receptors for lipid-soluble molecules such as glucocorticoids (GC) and thyroid hormones (TH) directly regulate transcription via DNA binding and chromatin remodelling. Nuclear hormone receptors are members of a large superfamily of transcriptional regulators with the ability to activate or repress many genes involved in development and disease. Nutrition influences not only hormone synthesis and metabolism but also hormone receptors, and regulation is mediated either by specific nutrients or by energy status. Recent studies on the role of early environment on development have implicated GC and their receptors in the programming of adult disease. Intrauterine growth restriction and postnatal undernutrition also induce striking differences in TH-receptor isoforms in functionally-distinct muscles, with critical implications for gene transcription of myosin isoforms, glucose transporters, uncoupling proteins and cation pumps. Such findings highlight a mechanism by which nutritional status can influence normal development, and modify nutrient utilization, thermogenesis, peripheral sensitivity to insulin and optimal cardiac function. Diet and stage of development will also influence the transcriptional activity of drugs acting as ligands for nuclear receptors. Potential interactions between nuclear receptors, including those for retinoic acid and vitamin D, should not be overlooked in intervention programmes using I or vitamin A supplementation of young and adult human populations.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3