Occupancy-abundance models for predicting densities of three leaf beetles damaging the multipurpose tree Sesbania sesban in eastern and southern Africa

Author:

Sileshi G.,Hailu G.,Mafongoya P.L.

Abstract

AbstractMesoplatys ochroptera Stål, Exosoma and Ootheca spp. seriously damage sesbania, Sesbania sesban (L.) Merril, a multipurpose leguminous tree widely used in tropical agroforestry. This is discouraging farmers from expanding the planting of sesbania in various agroforestry systems in eastern and south-central Africa. Rapid methods are needed for estimation of population densities of these beetles for decisionmaking in pest management. A study was conducted with the objectives of determining the existence of any positive relationship between the occupancy and abundance of Mesoplatys, Exosoma and Ootheca and determining the model that best predicts abundance from occupancy for rapid estimation of population densities. The Poisson model assuming spatial randomness, the negative binomial distribution (NBD) model assuming spatial aggregation, the Nachman model without any distribution assumption, and a General model incorporating spatial variance-abundance and occupancy-abundance relationships were fitted to data on adult M. ochroptera, Exosoma and Ootheca from western Kenya, southern Malawi and eastern Zambia. Very strong variance to abundance relationships were observed in the spatial pattern of all three beetles. The occupancy-abundance relationships were also positive and strong in all beetles. The occupancy and abundance predicted by the four models were closest to the observed at lower densities compared with higher beetle densities. At higher population densities, the NBD and the General model gave better fit for M. ochroptera and Exosoma. For Ootheca populations, the Poisson and NBD models gave better fit at higher population densities. The relationships established here can be used as guide to estimate beetle densities for decision-making in pest management.

Publisher

Cambridge University Press (CUP)

Subject

Insect Science,Agronomy and Crop Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3