Optimization of oviposition trap settings to monitor populations of Aedes mosquitoes, vectors of arboviruses in La Reunion

Author:

Brouazin Ronan,Claudel Iris,Lancelot Renaud,Dupuy Guillaume,Gouagna Louis-Clément,Dupraz Marlène,Baldet Thierry,Bouyer Jérémy

Abstract

AbstractSeveral dengue epidemics recently occurred in La Reunion, an island harboring two dengue viruses (DVs) vectors: Aedes albopictus, and Ae. aegypti, the former being the main local DV vector. Aedes aegypti shows a peculiar ecology, compared to other tropical populations of the same species. This study aimed to provide researchers and public-health users with locally validated oviposition traps (ovitraps) to monitor Aedes populations. A field experiment was performed in Saint-Joseph to assess the effect of different settings on the detection probability and apparent density of Aedes mosquitoes. Black plastic ovitraps were identified as the best choice. Vacoa trees (Pandanus utilis) were the only observed breeding sites for Ae. aegypti, shared with Ae. albopictus. They were the experimental units in a Latin square design with three factors: trap position in the trees (ground vs canopy), oviposition surface in the trap (blotting paper vs. vacoa leaf), and addition of organic matter to the trap water. The latter factor was found unimportant. On the ground, Ae. aegypti eggs were only found with vacoa leaves as the oviposition surface. Their detection and apparent density increased when ovitraps were located in the tree canopy. The main factor for Ae. albopictus was the oviposition surface, with a preference for blotting paper. In all trap settings, their detection was close to 100%. Larval survival was lower for a high egg density, combined with blotting paper as the oviposition surface. When monitoring mixed Aedes populations in La Reunion, we recommend using black plastic ovitraps, placed at 1.50-to-2.00-m high in vacoa trees, with vacoa leaves as the oviposition surface.

Funder

European Research Council,European Union

European Commision Horizon 2020

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3