Iron absorption from maize (Zea mays) and sorghum (Sorghum vulgare) beer

Author:

Derman D. P.,Bothwell T. H.,Torrance J. D.,Bezwoda W.R.,Macphail A. P.,Kew M. C.,Sayers M. H.,Disler P. B.,Charlton R. W.

Abstract

1. Iron absorption from maize (Zea mays) and sorghum (Sorghum vulgore) beer was more than twelvefold greater than from a gruel made from the constituents used to prepare the beer.2. The effect of changes occurring during brewing were investigated. These changes include a decrease in the solid content, and the formation of 30 ml ethanol/l and 5 ml lactic acid/].3. The presence of solid material was found to inhibit Fe absorption markedly, especially when the solid content was 100 g/l or more.4. The presence of ethanol potentiated Fe absorption but the effect was only modest in gruels with a high solid content.5 Fe absorption from a 2 ml lactic acid/] solution was four-fold greater than from a hydrochloric acid solution of the same pH. When lactic acid was added to a gruel containing 200 8 solids/l the mean absorbtion rose from 0.4 to 1.2%.6. In a direct comparison, Fe absorption from beer was significantly better than from a gruel of similar pH containing lactic acid.7. The results suggest that at least three factors are responsible for the enhanced Fe absorption from maize and sorghum beer. These include the removal of solids during fermentation and the presence of ethanol and of lactic acid in the final brew.8. In order to reproduce the way in which beer is brewed domestically in Fe containers, a study was done in which beer was prepared in the presence of Fe wire. Under such circumstances Fe was rapidly dissolved and the final Fe concentration of the brew was 89 mg/l. However, the nature of the Fecontaining compound or compounds was not elucidated.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3