Characterizing critical phases of germination in winterfat and malting barley with isothermal calorimetry

Author:

Qiao Youming,Wang Ruojing,Bal Yuguang,D. Hansen Lee

Abstract

The heat production of seeds during germination comes from metabolism as well as hydration. Previous studies either lack continuous measurements, or are based on samples composed of more than one seed, thus failing to characterize differences among the critical phases of germination. This study examines the potential of isothermal calorimetry to characterize water uptake and metabolism in single seeds. Seeds of malting barley (Hordeum vulgare L.) and winterfat [Krascheninnikovia lanata (Pursh) A.D.J. Meeuse & Smit], two species with contrasting seed size, structure, composition and selection history, were used to determine patterns of heat production rate by isothermal calorimetry during water uptake and germination. Embryos of malting barley contributed less than 4% of total seed weight, and metabolic heat production during Phase I of germination was negligible compared to that due to hydration. Embryos accounted for 74% of seed mass for winterfat, and the majority of heat produced in Phase I was due to metabolic heat release. The total heat production rate in Phase I decreased rapidly in malting barley due to slowing of hydration reactions, but increased gradually in winterfat due to an increasing metabolic rate. The heat production rate at the end of Phase II was about twice as high in malting barley as in winterfat. This indicates a higher metabolic activity for malting barley than for winterfat seeds during germination, which may have also contributed to the rapid increase in the heat production rate of malting barley seedlings during Phase III, compared to the gradual increase in heat production rate of winterfat. The comparison between excised embryos and intact seeds indicates that the covering tissues delay radicle emergence in malting barley, but not in winterfat, due to differences in seed structure between the two species.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

Reference29 articles.

1. The Influence of Temperature on Seed Germination Rate in Grain Legumes

2. Metabolic heat and CO2 production rates during germination of melon (Cucumis melo L.) seeds measured by microcalorimetry;Edelstein;Seed Science Research,2001

3. Seed Dormancy in Grasses

4. Cauliflower (Brassica oleraceaL.) Seed Vigour: Imbibition Effects

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3