Abstract
This paper establishes robust regression models for fast and efficient estimation of seed vigor based on high-resolution infrared thermography. High seed quality is of great significance for agricultural and silvicultural purposes, and seed vigor is a crucial agent of seed quality. In this study, we used the non-invasive technology of infrared thermal imaging to analyze seed vigor of Ulmus pumila L. and Oryza sativa L. Temperatures of young age and aged seeds during thermal decay were monitored over time. We found that the thermal decay dynamics of U. pumila seeds were highly differential among seeds with differential vigor. Furthermore, a regression model was developed to estimate seed vigor based on its thermal decay dynamics. Similarly, a close relationship was also found between thermal decay processes and seed vigor in O. sativa. These results suggest that infrared thermography can be widely applied in non-invasive examination of seed vigor and allows fast and efficient seed screening for agricultural and silvicultural purposes in the future.
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Reference41 articles.
1. Seed quality assessment
2. Mechanisms of Seed Deterioration;Coolbear,1995
3. Seed deterioration: Physiology, repair and assessment;Mcdonald;Seed Sci. Technol.,1999
4. Seed vigor and initial growth of corn crop
5. Enhancing genetic gain in the era of molecular breeding
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献