Author:
Salvini Séverine,Charbonnier Monique,Defoort Catherine,Alquier Christian,Lairon Denis
Abstract
We aimed to improve the use of the human intestinal Caco-2 cell line for studying dietary lipid and cholesterol processing by using isolated pure clones (). Three clones (TC7, PD7 and PF11) were grown as monolayers on semi-permeable filters and compared for cell viability, fatty acid and cholesterol apical uptake or basolateral secretion, apolipoprotein B-48 basolateral secretion and 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase activity. The TC7 clone showed the best viability upon apical incubation with mixed micelles and should be preferred for routine work. Short-term (3·0 h) rates of apical uptake of cholesterol were not different with the three clones, whereas the rate of apical uptake of oleic acid (18 : 1) was lower (P<0·05) with PF11 (250·6 nmol/mg) and the basolateral secretion of cholesterol and oleic acid was lower with the TC7 clone (0·40 and 29·1 nmol/mg respectively). The secretion of apolipoprotein B-48 basolaterally was about 2-fold lower than from PD7 clone. The basal levels of HMG-CoA reductase activity were significantly different (P<0·05; TC7>PF11>PD7). The down-regulation of the enzyme activity was moderate (range 13·8–21·0 %) and comparable in the presence of apical micellar cholesterol, but was much marked upon basolateral incubation with LDL (range 34·0–53·6 %), especially for the PD7 clone. In conclusion, the Caco-2 clones characterized here proved to be particularly suitable for studying lipid nutrients processing. Because these three clones exhibit some different metabolic capabilities, they provide a new tool to study intestinal response to lipid nutrients.
Publisher
Cambridge University Press (CUP)
Subject
Nutrition and Dietetics,Medicine (miscellaneous)
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献