Functional characterization of three clones of the human intestinal Caco-2 cell line for dietary lipid processing

Author:

Salvini Séverine,Charbonnier Monique,Defoort Catherine,Alquier Christian,Lairon Denis

Abstract

We aimed to improve the use of the human intestinal Caco-2 cell line for studying dietary lipid and cholesterol processing by using isolated pure clones (). Three clones (TC7, PD7 and PF11) were grown as monolayers on semi-permeable filters and compared for cell viability, fatty acid and cholesterol apical uptake or basolateral secretion, apolipoprotein B-48 basolateral secretion and 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase activity. The TC7 clone showed the best viability upon apical incubation with mixed micelles and should be preferred for routine work. Short-term (3·0 h) rates of apical uptake of cholesterol were not different with the three clones, whereas the rate of apical uptake of oleic acid (18 : 1) was lower (P<0·05) with PF11 (250·6 nmol/mg) and the basolateral secretion of cholesterol and oleic acid was lower with the TC7 clone (0·40 and 29·1 nmol/mg respectively). The secretion of apolipoprotein B-48 basolaterally was about 2-fold lower than from PD7 clone. The basal levels of HMG-CoA reductase activity were significantly different (P<0·05; TC7>PF11>PD7). The down-regulation of the enzyme activity was moderate (range 13·8–21·0 %) and comparable in the presence of apical micellar cholesterol, but was much marked upon basolateral incubation with LDL (range 34·0–53·6 %), especially for the PD7 clone. In conclusion, the Caco-2 clones characterized here proved to be particularly suitable for studying lipid nutrients processing. Because these three clones exhibit some different metabolic capabilities, they provide a new tool to study intestinal response to lipid nutrients.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3