Application of advanced synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy to animal nutrition and feed science: a novel approach

Author:

Yu P.

Abstract

Synchrotron radiation-based Fourier transform IR (SR-FTIR) microspectroscopy has been developed as a rapid, direct, non-destructive and bioanalytical technique. This technique, taking advantage of synchrotron light brightness and a small effective source size, is capable of exploring the molecular chemistry within the microstructures of a biological tissue without the destruction of inherent structures at ultraspatial resolutions within cellular dimensions. This is in contrast to traditional ‘wet’ chemical methods, which, during processing for analysis, often result in the destruction of the intrinsic structures of feeds. To date there has been very little application of this technique to the study of feed materials in relation to animal nutrient utilisation. The present article reviews four applications of the SR-FTIR bioanalytical technique as a novel approach in animal nutrition and feed science research. Application 1 showed that using the SR-FTIR technique, intensities and the distribution of the biological components (such as lignin, protein, lipid, structural and non-structural carbohydrates and their ratios) in the microstructure of plant tissue within cellular dimensions could be imaged. The implication from this study is that we can chemically define the intrinsic feed structure and compare feed tissues according to spectroscopic characteristics, functional groups, spatial distribution and chemical intensity. Application 2 showed that the ultrastructural–chemical makeup and density of yellow- and brown-seeded Brassica rape could be explored. This structural–chemical information could be used for the prediction of rapeseed quality and nutritive value for man and animals and for rapeseed breeding programmes for selecting superior varieties for special purposes. More research is required to define the extent of differences that exist between the yellow- and brown-seeded Brassica rape. Application 3 showed with the SR-FTIR technique that chemical differences in the ultrastructural matrix of endosperm tissue between Harrington (malting-type) and Valier (feed-type) barley in relation to rumen degradation characteristics could be identified. The results indicated that the greater association of the protein matrix with the starch granules in the endosperm tissue of Valier barley may limit the access of ruminal micro-organisms to the starch granules and thus reduce the rate and extent of rumen degradation relative to that of Harrington barley. It is the first time that the microstructural matrix in the endosperm of barley has been revealed by using the SR-FTIR technique, which makes it possible to link feed intrinsic structures to nutrient utilisation and digestive behaviour in ruminants. Application 4 showed with the SR-FTIR technique that the chemical features of various feed protein (amide I) secondary structures (such as feather, wheat, oats and barley) could be quantified. With a multi-component fitting program (Lorentz function), the results showed feather containing about 88% β-sheet and 4% α-helix, barley containing about 17% β-sheet and 71% α-helix; oats containing about 2% β-sheet and 92% α-helix; and wheat containing about 42% β-sheet and 50% α-helix. The relative percentage of the two may influence protein value. A high percentage of β-sheet may reduce the access of gastrointestinal digestive enzymes to the protein structure. Further study is required on feed protein secondary structures in relation to enzyme accessibility and digestibility. In conclusion, the SR-FTIR technique can be used for feed science and animal nutrition research. However, the main disadvantage of this technique is the requirement for a special light source; a synchrotron beam.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3