Oxygen uptake (VO2) kinetics in different species: a brief review

Author:

Poole David C,Kindig Casey A,Behnke Brad J,Jones Andrew M

Abstract

AbstractWhen a human begins to move or locomote, the energetic demands of its skeletal muscles increase abruptly and the oxygen (O2) transport system responds to deliver increased amounts of O2to the respiring mitochondria. It is intuitively reasonable that the rapidity with which O2transport can be increased to and utilized by (VO2) the contracting muscles would be greater in those species with a higher maximal VO2capacity (i.e., VO2max). This review explores the relationship between VO2maxand VO2dynamics or kinetics at across a range of species selected, in part, for their disparate VO2maxcapacities. In healthy humans there is compelling evidence that the speed of the VO2kinetics at the onset of exercise is limited by an oxidative enzyme inertia within the exercising muscles rather than by VO2delivery to those muscles. This appears true also for the horse and dog but possibly not for a certain species of frog. Whereas there is a significant correlation between VO2maxand the speed of VO2kinetics among different species, it is possible to identify species or individuals within a species that exhibit widely disparate mass-specific VO2maxcapacities but similar VO2kinetics (i.e., superlative human athlete and horse).

Publisher

Cambridge University Press (CUP)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermal relations in sled dogs before and after exercise;Journal of Experimental Zoology Part A: Ecological and Integrative Physiology;2024-03-21

2. Muscle oxygen saturation rates coincide with lactate-based exercise thresholds;European Journal of Applied Physiology;2023-06-01

3. Association between $$\dot{\text{V}}$$O2 kinetics and $$\dot{\text{V}}$$O2max in groups differing in fitness status;European Journal of Applied Physiology;2021-03-17

4. Principles, insights, and potential pitfalls of the noninvasive determination of muscle oxidative capacity by near-infrared spectroscopy;Journal of Applied Physiology;2018-01-01

5. Oxygen Uptake Kinetics;Comprehensive Physiology;2012-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3