Thermal relations in sled dogs before and after exercise

Author:

Paul Kailey D.1,Jiménez Ana Gabriela1ORCID

Affiliation:

1. Department of Biology Colgate University Hamilton New York USA

Abstract

AbstractRegulation of internal body temperature (Tb), or thermoregulation, is an evolutionarily conserved trait that places demand on basal metabolic rate of endothermic animals. Across species, athletes generate increased quantities of heat in comparison to their nonathletic counterparts and, therefore, must mediate physiological unbalance by upregulating the effectiveness of their heat dissipation abilities. Canine athletes are no exception to this phenomenon, however, with literature denoting body temperatures lower than nonathletic canines, it is clear they must possess adaptations to mitigate this demand. With VO2 max measurements of more than 200 mL/kg/min in sled dogs with mild training to 300 mL/kg/min in highly trained animals, sled dogs are a prime example of athleticism in canines. Seeking to determine correlations between Tear and body mass, morphology, and age of canine athletes, core body temperature (Tb) was measured with an instant ear thermometer, using Tear as a correlate before and after a 2‐mile run. In addition, we employed thermal imaging analysis to capture body‐wide heat dissipation patterns in sled dogs, and focused on thermal variation of mouth (Tmouth), nose (Tnose), and eyes (Teye). Furthermore, we looked at correlations between thermal variability across these four tissues and head morphology of each dog. Tear was consistently the highest temperature across all tissues measured, with a 1.5°C increase between pre‐ to postexercise (p < 0.001). Thermal imaging revealed significant positive correlations between Tmouth and body mass 15 min postexercise (p = 0.0023) as well as significantly negative correlations between Tnose and body mass at before exercise (p = 0.0468), Teye and nose length after run (p = 0.0076), and Tmouth and nose length after run (p = 0.0110). As body temperature rises during exercise, it becomes increasingly important to regulate blood flow throughout the body to supply working tissues with oxygen. This demand is offset by the role of the snout in evaporative cooling through panting, functioning as a prime location for heat dissipation and therefore maintaining significant relationships with many other vascularized tissues.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3