Effect of the Temperature of the Dipping Solution on the Antimicrobial Effectiveness of Various Chemical Decontaminants against Pathogenic and Spoilage Bacteria on Poultry

Author:

ALONSO-HERNANDO ALICIA1,GUEVARA-FRANCO JOSÉ ALFREDO2,ALONSO-CALLEJA CARLOS1,CAPITA ROSA1

Affiliation:

1. 1Department of Food Hygiene and Food Technology, Veterinary Faculty, University of León, León, Spain

2. 2Department of Zootecnics, Autonomous University of Baja California Sur, La Paz, México

Abstract

The influence of the temperature of the dipping solution on the antimicrobial effectiveness of several chemical poultry decontaminants was assessed. A total of 765 poultry legs were inoculated with gram-positive bacteria (Listeria monocytogenes, Staphylococcus aureus, Bacillus cereus, or Brochothrix thermosphacta) or gram-negative bacteria (Salmonella enterica serotype Enteritidis, Escherichia coli, Yersinia enterocolitica, or Pseudomonas fluorescens). Samples were dipped for 15 min in solutions (wt/vol) of trisodium phosphate (12%), acidified sodium chlorite (1,200 ppm), citric acid (2%), peroxyacids (220 ppm), chlorine dioxide (50 ppm), or tap water or were left untreated (control). The temperatures of the dipping solutions were 4, 20, or 50°C. Microbiological analyses and pH determinations were carried out after 0, 1, 3, and 5 days of storage at 4°C. In comparison with the control samples, all chemical solutions were effective for reducing microbial loads. The temperature of treatment affected the microbial reductions caused by all chemicals (P < 0.001). The lowest average bacterial reductions caused by trisodium phosphate, acidified sodium chlorite, citric acid, and peroxyacids were observed at 4°C, all sampling days and microbial groups being considered simultaneously. The highest and the lowest effectiveness for chlorine dioxide were observed at 4 and 50°C, respectively. These results may be of use to meat processors for selecting the best conditions for decontamination treatments and may help the European Regulatory Authorities make their decisions for authorization of poultry decontamination treatments.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3