A Meta-Analysis and Systematic Review of Listeria monocytogenes Response to Sanitizer Treatments

Author:

Hu Minmin1,Dong Qingli1ORCID,Liu Yangtai1ORCID,Sun Tianmei1ORCID,Gu Mingliang2,Zhu Huajian1,Xia Xuejuan1,Li Zhuosi1ORCID,Wang Xiang1,Ma Yue1,Yang Shuo1,Qin Xiaojie1ORCID

Affiliation:

1. School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

2. College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China

Abstract

Listeria monocytogenes is a ubiquitous organism that can be found in food-related environments, and sanitizers commonly prevent and control it. The aim of this study is to perform a meta-analysis of L. monocytogenes response to sanitizer treatments. According to the principle of systematic review, we extracted 896 records on the mean log-reduction of L. monocytogenes from 84 publications as the dataset for this study. We applied a mixed-effects model to describe L. monocytogenes response to sanitizer treatment by considering sanitizer type, matrix type, biofilm status, sanitizer concentration, treatment time, and temperature. Based on the established model, we compared the response of L. monocytogenes under different hypothetical conditions using forest plots. The results showed that environmental factors (i.e., sanitizer concentration, temperature, and treatment time) affected the average log-reduction of L. monocytogenes (p < 0.05). L. monocytogenes generally exhibited strong resistance to citric acid and sodium hypochlorite but had low resistance to electrolyzed water. The planktonic cells of L. monocytogenes were less resistant to peracetic acid and sodium hypochlorite than the adherent and biofilm cells. Additionally, the physical and chemical properties of the contaminated or inoculated matrix or surface also influenced the sanitizer effectiveness. This review may contribute to increasing our knowledge of L. monocytogenes resistance to sanitizers and raising awareness of appropriate safety precautions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3