Determination of the Thermal Inactivation Kinetics of the Human Norovirus Surrogates, Murine Norovirus and Feline Calicivirus

Author:

BOZKURT HAYRIYE1,D'SOUZA DORIS H.1,DAVIDSON P. MICHAEL1

Affiliation:

1. Department of Food Science and Technology, University of Tennessee, 2605 River Drive, Knoxville, Tennessee 37996-4591, USA

Abstract

Studies are needed to bridge existing data gaps and determine appropriate parameters for thermal inactivation methods for human noroviruses. Cultivable surrogates, such as feline calicivirus (FCV-F9) and murine norovirus (MNV-1), have been used in the absence of human norovirus infectivity assays. This study aimed to characterize the thermal inactivation kinetics of MNV-1 and FCV-F9 at 50, 56, 60, 65, and 72°C for different treatment times (0 to 60 min). Thermal inactivation was performed using the capillary tube method with titers of 4.0 × 107 (MNV-1) and 5.8 × 108 (FCV-F9) PFU/ml in triplicate experiments, followed by standard plaque assays in duplicate for each experiment. Weibull and first-order models were compared to describe survival curve kinetics. Model fitness was investigated by comparing the regression coefficients (R2) and the chi-square (χ2) and root mean square error (RMSE) values. The D-values calculated from the first-order model (50 to 72°C) were 0.15 to 34.49 min for MNV-1 and 0.11 to 20.23 min for FCV-9. Using the Weibull model, the tD values needed to destroy 1 log PFU of MNV-1 and FCV-F9 at the same temperatures were 0.11 to 28.26 and 0.06 to 13.86 min, respectively. In terms of thermal resistance, MNV-1 was more sensitive than FCV-F9 up to 65°C. At 72°C, FCV-F9 was slightly more susceptible to heat inactivation. Results revealed that the Weibull model was more appropriate to represent the thermal inactivation behavior of both tested surrogates. The z-values were calculated using D-values for the first-order model and the tD values for the Weibull model. The z-values were 9.31 and 9.19°C for MNV-1 and 9.36 and 9.31°C for FCV-F9 for the first-order and Weibull models, respectively. This study provides more precise information than previous reports on the thermal inactivation kinetics of two norovirus surrogates for use in thermal process calculations.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3