Dynamic Effects of Free Chlorine Concentration, Organic Load, and Exposure Time on the Inactivation of Salmonella, Escherichia coli O157:H7, and Non-O157 Shiga Toxin–Producing E. coli†

Author:

SHEN CANGLIANG12,LUO YAGUANG1,NOU XIANGWU1,WANG QIN2,MILLNER PATRICIA1

Affiliation:

1. 1U.S. Department of Agriculture, Agricultural Research Service, Environmental Microbial and Food Safety Laboratory, 10300 Baltimore Avenue, Beltsville, Maryland 20705

2. 2Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, USA

Abstract

This study evaluated the dynamic effects of free-chlorine (FC) concentration, contact time, and organic load on the inactivation of Salmonella, Escherichia coli O157:H7, and non-O157 Shiga toxin–producing E. coli (STEC) in suspension. Bacterial cells from four strains each of Salmonella, E. coli O157:H7, and non-O157 STEC were inoculated separately or as a multistrain cocktail into solutions with varying FC concentrations. Lettuce or tomato extract was used to simulate the organic matter present during commercial fresh and fresh-cut produce wash operations. After exposure to FC for various lengths of time, the bacterial survival and water-quality changes were determined. In the absence of organic matter in a wash solution, pathogen inactivation is primarily a function of initial FC concentration (P < 0.0001), exposure time (P < 0.0001), and pathogen strains (P < 0.0001). In general, an over 4.5-log CFU/ml pathogen reduction was found after exposure to >0.5 mg/liter FC for over 30 s, or to >1.0 mg/liter FC for over 5 s. When the combination of FC concentration and contact time were less than or equal to the above conditions, survival of pathogens was strain dependant and ranked as: Salmonella > E. coli O157:H7 > non-O157 STEC. When organic matter was present in the wash solution, pathogen inactivation efficacy was specifically dependent on the residual FC concentration, which directly relates to both the initial FC concentration and the organic load. Prevention of pathogen survival in chlorinated produce wash solutions can be achieved by maintaining sufficient FC concentration and reducing the accumulation of organic matter.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3