Development and Application of an Enzyme Immunoassay Based on a Monoclonal Antibody against Gonyautoxin Components of Paralytic Shellfish Poisoning Toxins

Author:

KAWATSU KENTARO1,HAMANO YONEKAZU1,SUGIYAMA AKIRA2,HASHIZUME KIYOSHI2,NOGUCHI TAMAO3

Affiliation:

1. 1Division of Food Microbiology, Osaka Prefectural Institute of Public Health, 3-69, Nakamichi 1-chome, Higashinari-ku, Osaka 537-0025, Japan

2. 2Public Health and Environment Research Division, Mie Prefectural Science and Technology Promotion Center, 3690-1, Sakura-machi, Yokkaichi, Mie, 512-1211, Japan

3. 3Laboratory of Food Hygiene, Faculty of Fisheries, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki, 852-8521, Japan

Abstract

With a gonyautoxin 2/3 (GTX2/3)–specific monoclonal antibody (designated GT-13A) and a saxitoxin-horseradish peroxidase conjugate (STX-HRP), a direct competitive enzyme immunoassay (GTX-EIA) was established and its sensitivity to various toxin components was investigated. The concentrations resulting in 50% inhibition of the binding of STX-HRP to the solid-phase GT-13A antibody for GTX2/3, decarbamoyl-GTX2/3 (dc-GTX2/3), N-sulfocarbamoyl-GTX2/3 (C1/2), GTX1/4, STX, and neosaxitoxin (neoSTX) in GTX-EIA were found to be 0.28, 0.41, 0.52, 3.46, 4.06, and 89.37 ng/ml, respectively. When the minimum detection limit was assumed to be at a toxin concentration causing 30% inhibition of the binding of STX-HRP to the solid-phase GT-13A antibody, the detection limits for GTX2/3, dc-GTX2/3, C1/2, GTX1/4, STX, and neoSTX were found to be 0.15, 0.18, 0.19, 1.09, 1.50, and 22.93 ng/ml, respectively. These results indicate that all of the GTX components examined and STX are detectable at concentrations lower than the regulatory limit of 80 μg/100 g of shellfish tissue, even when a minimum dilution factor of 100 is applied to tissue extracts with the extraction procedure of the Association of Official Analytical Chemists. Therefore, GTX-EIA is thought to be a useful qualitative screening method for GTX components and STX in the mass monitoring of toxin-contaminated shellfish.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3