Affiliation:
1. Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan
2. Nifrel, Osaka Aquarium Kaiyukan, 2-1, Senribanpakukoen, Suita, Osaka 565-0826, Japan
Abstract
Marine Takifugu pufferfish, which naturally possess tetrodotoxins (TTXs), selectively take up and accumulate TTXs, whereas freshwater Pao pufferfish, which naturally possess saxitoxins (STXs), selectively take up and accumulate STXs. To further clarify the TTXs/STXs selectivity in pufferfish, we conducted a TTX/STX administration experiment using Chelonodontops patoca, a euryhaline marine pufferfish possessing both TTXs and STXs. Forty nontoxic cultured individuals of C. patoca were divided into a seawater group (SW, acclimated/reared at 33‰ salinity; n = 20) and a brackish water group (BW, acclimated/reared at 8‰ salinity; n = 20). An aqueous TTX/STX mixture was intrarectally administered (both at 7.5 nmol/fish), and five individuals/group were analyzed after 1–48 h. Instrumental toxin analyses revealed that both TTX and STX were taken up, transferred, and retained, but more STX than TTX was retained in both groups. TTX gradually decreased and eventually became almost undetectable in the intestinal tissue, while STX was retained at ~5–10% of the dose level, and only STX showed transient transfer in the liver. The BW group showed a faster decrease/disappearance of TTX, greater STX retention in the intestine, and greater STX transient transfer to the liver. Thus, C. patoca appears to more easily accumulate STXs than TTXs, especially under hypoosmotic conditions.
Funder
Japan Society for the Promotion of Science
Subject
Health, Toxicology and Mutagenesis,Toxicology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献