Affiliation:
1. 1Department of Poultry Science, Texas A&M University, College Station, Texas 77843
2. 2U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, 2881 F&B Road, College Station, Texas 77845, USA
Abstract
The objective of this study was to evaluate the efficacy of male-specific (F+) coliphages as a fecal-contaminationindicator for fresh carrots. The prevalence of specific pathogens and indicator organisms on the surface of carrots obtained from a farm, truck, and processing shed was studied. Twenty-five carrot samples collected from each of these locations were washed, and aliquots of the wash were analyzed for the presence of F+ coliphages, Escherichia coli, Salmonella, and Shigella. Additionally, the Salmonella isolates were genotyped using pulsed-field gel electrophoresis (PFGE). Our studies detected the presence of F+ coliphages, E. coli, and Salmonella on carrots. All samples, however, tested negative for Shigella. Although none of the carrot samples from the field were positive for E. coli, one sample was positive for Salmonella, and another was positive for F+ coliphages. From the truck, two carrot samples (8%) were positive for Salmonella, four (16%) were positive for F+ coliphages, and four (16%) were positive for E. coli. None of the carrot samples from the processing shed were positive for Salmonella. However, 2 carrot samples (8%) were positive for E. coli, and 14 carrot samples (56%) were positive for F+ coliphages. The PFGE results suggest that there were three distinct Salmonella genotypes among the carrot samples from the truck and that the Salmonella isolates identified on carrot samples from the field and truck locations were different. Microbiological screening of fresh produce such as carrots (which can be exposed to fecal contaminants in soils and water) should ensure the detection of both viral and bacterial contaminants. Overall, in this study, F+ coliphages were detected in 25% of the carrot samples, compared to E. coli (8%), Salmonella (4%), and Shigella (0%). The results suggest F+ coliphages can serve as a conservative indicator of fecally associated viruses on carrots. This suggests that in addition to E. coli screening, F+ coliphages should be included when produce such as carrots that are vulnerable to fecal contaminants are screened. Since the detection of specific enteric viral pathogens is expensive, screening for viral indicators of fecal contamination using F+ coliphages can be an economical approach to providing an additional level of assurance about the microbiological quality of fresh carrots.
Publisher
International Association for Food Protection
Subject
Microbiology,Food Science
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献