Mathematical Approaches To Estimating Lag-Phase Duration and Growth Rate for Predicting Growth of Salmonella Serovars, Escherichia coli O157:H7, and Staphylococcus aureus in Raw Beef, Bratwurst, and Poultry

Author:

BORNEMAN DARAND L.1,INGHAM STEVEN C.1,ANÉ CÉCILE2

Affiliation:

1. 1Department of Food Science, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA

2. 2Departments of Statistics and Botany, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA

Abstract

This study was done to optimize accuracy of predicting growth of Salmonella serovars, Escherichia coli O157:H7, and Staphylococcus aureus in temperature-abused raw beef, poultry, and bratwurst (with salt but without added nitrite). Four mathematical approaches were used with experimentally determined lag-phase duration (LPD) and growth rate (GR) values to develop 12 versions of THERM (Temperature History Evaluation for Raw Meats; http://www.meathaccp.wisc.edu/THERM/calc.aspx), a computer-based tool that calculates elapsing lag phase or growth that occurs in each entered time interval and sums the results of all intervals to predict growth. Each THERM version utilized LPD values calculated by linear interpolation, quadratic equation, piecewise linear regression, or exponential decay curve and GR values calculated by linear interpolation, quadratic equation, or piecewise linear regression. Each combination of mathematical approaches for LPD and GR calculations was defined as another THERM version. Time, temperature, and pathogen level (log CFU per gram) data were obtained from 26 inoculation experiments with ground beef, pork sausages, and poultry. Time and temperature data were entered into the 12 THERM versions to obtain pathogen growth. Predicted and experimental results were qualitatively described and compared (growth defined as >0.3-log increase) or quantitatively compared. The 12 THERM versions had qualitative accuracies of 81.4 to 88.6% across 70 combinations of product, pathogen, and experiment. Quantitative accuracies within ±0.3 log CFU were obtained for 51.4 to 67.2% of the experimental combinations; 82.9 to 88.6% of the quantitative predictions were accurate or fail-safe. Piecewise linear regression or linear interpolation for calculating LPD and GR yielded the most accurate THERM performance.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3