Predicting Pathogen Growth during Short-Term Temperature Abuse of Raw Pork, Beef, and Poultry Products: Use of an Isothermal-Based Predictive Tool

Author:

INGHAM STEVEN C.1,FANSLAU MELODY A.1,BURNHAM GREG M.1,INGHAM BARBARA H.1,NORBACK JOHN P.1,SCHAFFNER DONALD W.2

Affiliation:

1. 1University of Wisconsin–Madison, Madison, Wisconsin 53706

2. 2Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, USA

Abstract

A computer-based tool (available at: www.wisc.edu/foodsafety/meatresearch) was developed for predicting pathogen growth in raw pork, beef, and poultry meat. The tool, THERM (temperature history evaluation for raw meats), predicts the growth of pathogens in pork and beef (Escherichia coli O157:H7, Salmonella serovars, and Staphylococcus aureus) and on poultry (Salmonella serovars and S. aureus) during short-term temperature abuse. The model was developed as follows: 25-g samples of raw ground pork, beef, and turkey were inoculated with a five-strain cocktail of the target pathogen(s) and held at isothermal temperatures from 10 to 43.3°C. Log CFU per sample data were obtained for each pathogen and used to determine lag-phase duration (LPD) and growth rate (GR) by DMFit software. The LPD and GR were used to develop the THERM predictive tool, into which chronological time and temperature data for raw meat processing and storage are entered. The THERM tool then predicts a Δ log CFU value for the desired pathogen-product combination. The accuracy of THERM was tested in 20 different inoculation experiments that involved multiple products (coarse-ground beef, skinless chicken breast meat, turkey scapula meat, and ground turkey) and temperature-abuse scenarios. With the time-temperature data from each experiment, THERM accurately predicted the pathogen growth and no growth (with growth defined as Δ log CFU ≥ 0.3) in 67, 85, and 95% of the experiments with E. coli O157:H7, Salmonella serovars, and S. aureus, respectively, and yielded fail-safe predictions in the remaining experiments. We conclude that THERM is a useful tool for qualitatively predicting pathogen behavior (growth and no growth) in raw meats. Potential applications include evaluating process deviations and critical limits under the HACCP (hazard analysis critical control point) system.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3