Influence of Growth Conditions on Pressure Resistance of Vibrio parahaemolyticus in Oysters and the Optimization of Postpressure Treatment Recovery Conditions

Author:

YE MU1,HUANG YAOXIN1,NEETOO HUDAA1,SHEARER ADRIENNE E. H.1,CHEN HAIQIANG1

Affiliation:

1. Department of Animal and Food Sciences, University of Delaware, Newark, Delaware 19716-2150, USA

Abstract

Vibrio parahaemolyticus ATCC 43996 was grown at 15°C for 53 h, 20°C for 24 h, 25°C for 12 h, 30°C for 9 h, 35°C for 9 h, or 40°C for 6 h to early stationary phase. Oyster meats were blended, autoclaved at 121°C for 15 min, inoculated with V. parahaemolyticus, and pressure treated at 250 MPa for 2 and 3 min and at 300 MPa for 1 and 2 min at 21°C. Overall, growth temperatures of 20 and 40°C yielded the greatest pressure resistance in V. parahaemolyticus. The effects of salt concentration and H2O2-degrading compounds on the recovery of V. parahaemolyticus also were investigated. Sterile oyster meats were inoculated with V. parahaemolyticus and treated at 250 MPa for 1, 2, or 3 min at 21°C. These meats were then blended with 0.1% peptone water supplemented with 0.5 to 1.5% NaCl and plated on tryptic soy agar (TSA) supplemented with 0 to 3.5% NaCl. For recovery of pressure-injured cells, peptone water with 1% NaCl and TSA with 0.5% NaCl were the best diluent and plating medium, respectively. Addition of sodium pyruvate (0.05 to 0.2%) or catalase (8 to 32 U/ml) did not increase the recovery of V. parahaemolyticus after pressure treatment. The effect of incubation temperature and gas atmosphere on the recovery of V. parahaemolyticus after pressure treatment also was determined. Aerobic incubation at 30°C resulted in the highest recovery of V. parahaemolyticus in sterile oyster meats. The 30°C incubation temperature was also the optimum temperature for recovery of V. parahaemolyticus in pressure-treated live oysters. The results of this study indicate that the growth conditions for V. parahaemolyticus before and after high hydrostatic pressure treatment should be taken into consideration when assessing the efficacy of pressure inactivation.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3